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Thin-Walled Curved Beam Theory Based on 
Centroid-Shear Center Formulation 
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To overcome the drawback of currently available curved beam theories having non-symmemc 

thin-walled cross secnons, a curved beam theory based on centrold-shear center formulatton ~s 

presented for the spaualty coupled free vibration and elastic analysis For thts, the dtsplacement 

field ~s expressed by introducing displacement parameters defined at the centrold and shear 

center axes, respectively Next the elastic strata and kinetic energies considering the thickness- 

curvature effect and the rotary inertia of curved beam are r~gorously derived by degenerating the 

energies of the elastic contmuum to those of curved beam And then the eqmhbrIum equations 

and the boundary condmous are consistently derived for curved beams having non-symmemc 

thin-walled closs section It is emphasized that for curved beams with L-  or T shaped sectmns, 

this thin-walled curved beam theory can be easily 1educed to the solid beam theory by sm~ply 

putting the secttonal properties associated w~th warping to zero In order to illustrate the validity 

and the accuracy of thts study, FE solunons using the Hermlt~an curved beam elements are 

presented and compared with the results by prewous research and ABAQUS's shell elements 
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1. Introduction 

Curved beam structures have been used m 

many mechanical, aerospace and civil engineering 

apphcatmns such as spring design, curved wires 

m missile-guidance floated gyroscopes, curved 

gilder bridges, brake shoes w~thm drum brakes, 

nre dynamms, stiffeners in aircraft structures, and 

turbomaehmery blades It can also be used as a 

simplified model of a shefl structure 

In general, the vlbranonal and elasuc behavior 

of thin wailed curved beam structures are very 
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complex because the axiat, flexural and torsional 

detbrmatlons are coupled due to the curvature 

effects as well as non-symmetry of cross section. 

Investigation into the behavior of thln~walled 

curved members has been carried out extensi- 

vely since the early researches (Vlasov, 1961, 

T~moshenko and Gere, 1961) and pamcularty 

monographs by Dabrowsk[ (1968), Hems (1975) 

and Gjelsvlk (1981) are worth remarking as use- 

ful references for curved beam theory and its 

applications 

Up to the present, considerable researches 

(Lee, 2003, Raveendranath et a l ,  2000, Wilson 

and Lee, 1995, Gupta and Howson, t994) on 

the free m-plane v~bration of curved beam have 

been done conslderlng the various parameters 

such as boundary condlUons, shear deformation, 

rotary mema, variable curvatures and vaHabte 

cross sections. And the researches for the de- 
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coupled free out -of -p lane  wbrat lon behawor of 

curved beam have been performed by several au- 

thors (Chucheepsakul and Saetlew, 2002, Plovan 

et al., 2000, Cortmez and Piovan, 1999, t-lowson 

and Jemah, 1999; Kawakami et a l ,  1995} Also 

Kang and Han (1998) presented the closed-form 

solutmn and a numerical solution for the de- 

coupled out -of -p lane  stauc analysis of a curved 

beam with circular cross section subjected to tor- 

que by the differential quadrature method 

It  is well known that the thm-wal led strmght 

beam theory with non-symmemc cross section 

based on the centroid-shear center formulation 

is established, m which its axial, flexural and 

warpmg-torsmnal  deformations are deeonpled 

Hence the warping-free theory for straight beam 

with non-symmetric thin-walled section is easdy 

obtained from the thin-wal led beam theory by 

s~mply putting the warping moment of mema  to 

zero. 

On the other hand, for the elasnc and stability 

theories of  curved beams based on the centrold 

shear center formulation, most of  prewous re- 

searches (Kang and Yoo, 1994, Yang and Kuo, 

1987, 1986) have been restricted to those with 

doubly symmetric thin-walled cross sectmns Fur- 

thermore it has been reported by Gendy and 

Saleeb (1992) that the curved beam theory based 

on the centrold-shear center formulation is valid 

only for a cross section having doubly symmetry 

or one axis of  symmetry which hes m the plane 

of  beam curvature, otherwise, couphng terms 

still exist For  this reason, it appears that most of  

thin walled curved beam theories with non-sym- 

metric cross sections have been developed based 

on displacement parameters which are all defined 

at the centrold axis (Kzm et al., 2002, 2000a, b ,  

Hu et a l ,  1999, Gendy and Saleeb, 1994, 1992, 

Saleeb and Gendy, 1991 ; Ktm et at., 2002) pre- 

sented analyttcal and numerical solutions on a 

spatial free vlbratmn of  thin-walled curved beam, 

as a separated curved structure, w~th non-sym- 

memc sectmn neglecting shear deformation effects 

and Gendy and Saleeb (1994) presented an effec- 

tive formulatton on spaual  free vlbratmn of  arbi- 
trary thin-walled curved beam by including the 

shear deformation and rotary inertia. However, 

they partially considered the effect of  thickness- 

curvature and shear deformation 

It is important to note that these centromd 

formulatmns for the vtbratlon and elastic analysis 

of thin-walled curved beam with L-  or T-shaped 

cross sectmns have a drawback to evaluate the 

several sectional properties associated with war- 

ping addmonal ly  because the warping functmn 

of cross section at the centrotd does not become 

zero To the best of  my knowledge, Tong and 

Xu's study (2002) was only the recent attempt 

reported on the curved beam theory with non 

symmetric cross sectmn based on the eentrold- 

shear center formulation in the literature. How- 

ever they did not consider the thickness-curva- 

ture effect which made the difference become 

larger m curved beam with large subtended angle 

and small radms and was restricted to only the 

elasUc analys~s of  curved beam 

The mare purpose of  this paper is to present a 

curved beam theory with non-symmetric cross 

section based on centrold-shear center formula- 

tlon, m whtch the axml and flexural &splace- 

ments are defined at the centrold and the lateral 

and warping- tors ional  displacements at the shear 

center, respecnvely Pamcular ly  for curved beams 

with L-  or T-shaped sectmns, this thin-walled 

curved beam theory can be reduced easily to the 

theory neglecting the restrained warping torsmn 

by simply putting the sectional properties ass- 

oclated with warping defined at the shear center 

to zero Also for the curved beam with nor~ sym- 

metric closed sectmns, this beam theory may be 

reduced naturally to that with neglecting warping 

deformation because the values of  sectional prop- 

ertles associated with warping at the shear center 

become extremely large. The ~mportant points 
presented are summarized as follows 

(1) The displacement field for non-symmetric 

thin-wal led curved beams w~th constant curva- 

ture Is introduced, in whtch the axial d~splace- 

ment and two flexural rotauons are defined at the 

centro~d and the torsmnal rotation including the 

normalized warping functmn and two lateral dis- 
placements are defined at the shear center, re- 

specUvely 
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(2) Next force deformation relations due to 

the normal stress considering the thickness curva- 

ture ette, ct are accurately derived at the general 

coordinates. 

(3) And then the elastic strain and kinetic 

energies based on the centroid shear center for- 

mulation are newly derived for the free vibra~ 

tion and elastic analysis of non symmetric curved 

beams having thin-walled open and closed cross 

sections, respectively. 

(4) in addition, ICE procedure using the He- 

rmitian curved beam elements is presented for 

the analysis of non symmetric curved beams, 

Finally to demonstrate the validity of the pro- 

posed study, numerical solutions are presented 

and compared with the results by available re- 

ferences and ABAQUS's shell elements. 

2. Curved Beam Theory Based on the 
Centroid-Shear Center Formulation 

To degenerate a spatially coupled free vibration 

and elastic ~heories for the continuum to those 

for the thin-walled curved beams, the following 

assmnptions are adopted in this paper. 

(1) The thin walled curved beams are linearly ~ 

elastic and prismatic. " 

(2) The cross section is rigid with respect to 

in plane deformation except for warping defor~ 

marion. 

(3) The axis of curvature does not necessarily Fig. 1 

coincide with one o1" the principal axes. 

2.I  K i n e m a t i c s  

In this study, two curvilinear coordinate 

systems are adopted to derive a general theory for 

free vibration and elastic analysis of thin walled 

curved beams consistently. Vig. [ shows the first 

coordinate system (xl, x~, xa), in which the Xl axis 

coincides with the curved cemroid axis having the 

radius of curwmlre /2 but xz, x3 axes are not 

necessarily principal inertia axes. While the sec- 

ond coordinate system (xi ~, x~, x~) is constituted 

by the shear center axis and two orthogonal axes 

running parallel with the direction of x2, )ca axes 

(see Fig. 2). Also x2 p and x~ ~ are principal inertia 

axes defined at the centroid. Then mmsformation 

equations between two coordinates systems may 

be expressed by 

Xl=X~ (la) 

x2-x~+ez x~ cos 7 - x ~ ' s i n  7 (lb) 

x,~-x~+e3=x~sin 7+xf cos 7 (lc) 

where (e~, e:~) denotes the position vector of the 

X~ v R . . . . . . . . .  

A curvilinear coordinate system for non 

symmetric thin-walled curved beam 

x !,' ~ U) 

,,, ~ ' / a ' e : + > x , _ ;  

~+'~, ~ x ~  
S : Shear center 

C: Centroid 
(a) Displacement parameters 

X3 

F~ 

M~ I ~-t~'~ 

t1:~ 
> 

X2 

(b) Stress resultants 

Fig, 2 Two coordinale systems, displacement paramelers and stress resultants 
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shear center and 7 is the angle between xz and the 

X~ axis 

To Introduce the displacement field for the 

non symmetric thin-walled cross secnon, seven 

displacement parameters and stress resultants are 

used as shown in Figs 2(a) and 2(b),  re- 

spectively Assuming that the cross section is rigid 

with respect to in-plane deformation, the dis- 

placement field can be written as follows 

UI = Ux+x~co~-x~c.o~+ fr x~) (2a) 

U2-- U, -  O ( x3- e3) (2b) 

U~ = G + 0 (x~- e~) (2c) 

where U~, coz, ~0a=the ngad body translation and 

two rotations with respect to xi, x2, xa axes ; 0, 

Uy, U~=the rigid body rotation and two trans- 

lations with respect to xf, x~, x~ axes,  f ,  q6=the 

displacement parameter measuring warping de- 

formation and the normahzed warping function 

defined at the shear center, respectively For  later 

use, sectional properties with respect to the cen- 

troid-shear center are defined as 

I2= f x~ dA, Z3= f x~ dA, 12a= f x2x3 dA 

I,= f r dA, l,2= f ~)x~ dA, I,a= f exz dA 
(3a-l) 

[~= f x~ dA, I~= f x~d dA, l~= f dx~ dA 

centrold-shear center axes aie defined as follows 

F~ f r. dA, F~= f r,2 dx, F3= f r,3 dA 

M,= f [ r, dx2- e2) - vzdxs- e3) ] dA 
(da h) 

M2= f rux~dA, M~=- farnxzdA, M,= farnd? dA 

r R+x~ 

where F~=the  axial force acting at the centrold,  

Fz and F3-- the  shear forces acting at the shear 

center,  M~=the total twisting moment with re- 

spect to the shear center axis ,  M2 and M~=the 

bending moments with respect to xz and xs axes, 

respectively MR and Mo----the restiained (non-  

uniform) torsional moment and the bimoment 

about the shear center axis, respectively 

The principle of virtual work for the general 

contmuum vibratmg harmonically ~s expressed as 

f z,~3e~ dV-~oz fvpu,3U, dV= fsT,3U, dS (5) 

where c o = t h e  conventional linear strata due to 

U, ,  p = t h e  density,  o)=the circular frequency, 

T,=-the surface force The first term denotes the 

conventional internal virtual work giving the elas- 

tic strata energy and the second term represents 

the kinenc energy In case of the thin-walled 

circular beam, Eq (5) may be transfolmed to 

the principle of the total potential energy I I  as 

follows 

where A , / 2 ,  I3 and Iz3=the cross secnonal area, 

the second moments of  Inertia and the product 

moment of inertia about x2 and x3 axes, respec- 

tively I , = t h e  warping moment of  lne, tla It 
should be noticed that I~z, /~s are always equal 

to zero and 122z, I22a, Iaaa,/,as, I~za, ]r denote the 
sectional properties to consider the thickness- 

curvature effect which makes the difference be- 

come larger in craved beam with large subtended 

angle and small radius 

2.2 P r i n c i p l e  o f  v i r t u a l  w o r k  

With the assumption of  the rigid in-plane  de- 

formation, stress resultants with respect to the 

I I  ~ ] - I z - -  I I m - -  Hext (6) 

where the detailed expressions for each term of 

I I  are 

l ~ 2 R + x ~  I'[E=-~'fofa[~',tgtiq- rl2em-k2rlae,a]-~RdAdxt (7a) 

1 * 2 R+xs fo ~[U~I + U~2 +/ .~3]~dA dx, (7b) 

!I ext = 2 U~F~ (7e) 

where Ue, F ~ = t h e  nodal displacement and nodal 

force vectors, respectively 
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On the other hand, stram-&splacement rela- 

nons due to the filst order dmplacements are 

expressed as follows 

e l l =  (UI ,1  + ~ ) R  R +xs 

= [ ( u ~ + U ~ R  Re2 0) (So) 
- x2 ( - ~  + co~ ) + x~w~ + (~ f" 1 R + 

U21R 

(Sb) 
=[ u;-o '  R " ( x ~ - e ~ ) ] ~ - c o 3 + f O a  

2e~=( Ua, t - - ~  ) R + U1,3 
R+x~ 

[ ~%x xs (8c) = - + U~ + O' (x~-e~)  - ~  ~o~ 

For thm~walled c~rcular beams subjected to di- 

stributed loadmgs, by submtutmg linear stratus 
(Sa-c) into Eq (7a) and integrating over the 

cross sectmnal area, Eq (7a) ~s reduced to the 
following equanons 

I ~ , U~ e2 , 0+,+ , 

t t ~ 2 

(9) 

And Eq (7c) can be expressed as 

I-[~xt= f z[p'Ux+I~U'TIhUz (10) 

+ m~cot + m2o)~ + rmo)~ + m , f ;  dx~ 

whele #I, /~, /N are the dlsmbuted forces m the 
dlrectmn of  x~, xm xa axes and m~, m~, ma, m~ 
denote d~stnbuted moments 

Now by revoking the stanonary condmon of 
the total potential energy, eqmhbrmm equations 
and boundary condmons are obtained as 

F [ + - ~  ~ =  --p~ (1 la) 
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(lib) 

(llc) 

(lld) 

(lie) 

(llf) 

- - ~ - + F J  = - / ~  

e2 E', • .t4,, • Ms  �9 .I ~. , ,1 - - ~ - -  - m~ 

- F~ + M~ = -m2  

F2~ ea ~ ez ~ Mt • ~,  
= -  m s  

e~ E,  • e2es  C3 C3 
�9 "2~---R--F3+ M~-~RMR 

- M R + M ;  = - m ~  

and 

~U~(o) =SU~ or F l ( o ) = - F ~  (12a) 

8Ux(l) =3U# ol FI(I)=F? (12b) 

8Uy(O) =~g~ or f a ( o ) - = - f g  (12c) 

8U,,(l) =8Ufl or F 2 ( l ) = F f l  (t2d) 

8U,(o) = 8 / . ~  or Fa(o)=-F#  (12e) 

aU~( l )  =8U2 or  F~(I)=Fg (12f) 

a0(o)  = 8 0  p or M~(o)=-M~ (t2g) 

50(t) = 8 0  ~ or M~(I)=M7 (12h) 

8oo~(o) = S a ~  or 3 /2 (o )= -M~?  (12,) 

3oJ2(/) =&o~ or Mz(l)=Mr (t2j) 

8r.os(o) =80)~ or Ms(o)=-M~ (lZk) 

8wz(t)--8o)~ or 3/13(l)=M# (121) 

3/(O) =8./"/' or Mr (12m) 

U ( l )  = 3 f  q or Me(l) =Mg (12n) 

2.3 Elastic strain and kinetic energies of 

thin-walled curved beam 
Now force-deformanon relations due to the 

normal stress are derived In thts study, the sheal 
deformanon effects due to both the shear foLces 
and the restrained warping torsion are neglected 
Therefore, the ~hear rigidity eon~tramt~ m Eq 
(9) are as follows 

2 
r Ca , e3 ,e 0 U~ -- 003---~-- ~s •  = (13a) 
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U~R ~- U~, + ( .o2+~ o)~-R~e~e~ ( = 0  (13b) 

, (03 e3 _ t~ + w +  f - - ~ f  --O (13c) 

Form Eq (13a-c), the rotational displacements 
coz, r and the warping parameter f may be re- 
written w~th respect to Ux, Uy, U~, 0 as follows 

U~ e~ U ' -U~  eze~ O' (14a) 
~o~= R R ~ - R  

R - e ~  U~, e~ O" (14b) ~os- R - - R  

U' R+e~ O' (14c) /- R R 

Accordingly we can rewrite the dtsplacement field 
Ut in Eq (2a) using Eqs (14a-c) 

e~ U t ~ U x - x z { ( 1 - ~ ) U ~ , - ~ O  "} 

--X3 { Ux , e2 , ._ e2e~ -~- - r~-  u~ + u ~ _ ~ -  0'} 05) 
U~ e3 

Also the normal strain ell can be obtained by 
substituting Eqs. (14a-c) into Eq (Sa) And then 
by substituting Eq. (8a) into Eqs (4a), (4e), 
(4f), (4g) and integrating over the cross section, 
the following force-deformation relations due to 
the normal stress are obtained 

M~ 
M~ 
Me 

^ 

h 
R 

=E /~ 
R 

R 2 

R R 

I~ I~ L 
R R 

VxZ , Vz  ~32 *W--g0 

--U--~ U; u~ - ~  ~, 

R-e~ U" d - - U - , - E O  . o  

b;' R+e~ 0" 
R R 

(16a-d) 

where E = t h e  Young's modulus and 

L = I ~ _ ~  ' L=[~ IZ~R (17a,b) 

L ~ = I ~ - - ~  -, ] r162 I~zR (17c,d) 

And the St Venant torsional moment is expressed 
as 

.~, _ ,.~ . [ U~ . R + e~ ) (18) , - w  \ ~ ' - - E - -  O" 

where G=the  shear modulus and ] = t h e  tor- 
sional constant In evaluatmg Eqs (16a-d), I~2 
and 1,8 vanish and the following approximation 
is used 

Xa .V3 2 R (19) 
R +xa 

Consequently subsututlon of force-deformation 
relations (16a-d) and (18) into Eq (9) leads to 
the elasUc strata energy of the thin-walled curved 
beam w,th non symmemc cross section. 

l c , g~ e~ 

e •177177177 2 A 

v~,~kRU, W, v y v  R u R=V]k R u, R u R) 

. Eh~ I b ; ,  R+e3 o,A[ R-e3 .... d .,, 0 ~1. 

Now by ehmlnatmg F2, F3, MR from Eqs ( l l a  
g), equlhbrmm equat]ons of curved beams be- 
come 

M' 
F{ + - ~  - - = - p l  mzR (21a) 

R R (21b) 
_ R + e ~  e~  , , 

R l>~+~ m~-m~ 

F1 4-MZ=-P3-m'z (21c) 
R 
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J_ 

R l a -  m ~ - T  ~ -  "~' 

(21d) 

And substitution of Eqs (16a-d) and (18) into 
Eqs (21a-d) results in 

E A  ( Us U; e2 ) m2 R R 0' = - - P t - - ~  (22a) 

~,, . u, - ~ - ' T  ~ - ~ -  
+ E ]  { R - e ,  .,,,. d " ,k-To, ,  -~0  ..... -~) 

( e , (2R-ea)  '~ 
+ Ei~  R~ U;"' + UU+ 

e2ea(R-ea) .... 2ea~,,\  
-~ - - R ~  r - - -Rr  a ) 

G]R ( ~ '+ TR + e* 0") 

EL to;' , R+e, o") 
+---g-(-~ * R--- I 

R+ea . - e~ , , 

(22b) 

E l i  e~ .,,,, e~ . , ,  rr,,,, 2 U;  U. 
t - - g ' * - ~ " ' - ' -  R ~ t~' 

eae' g"'+ ;2' (1 - ~ )  ~90 + ; ` ' '  } R  

~.~ [ R -  ea ,,,,,, R -  e~ 2 o ..... g' . O \  

EA / - ,  . U,, e, ~ ~ 
i < ~ - T - g  ~ )= - ~-m, 

(22c) 

@ " *m ga 

. . . . . .  +R-ca .... +U~ ~ ...... 2e~e~ ~ e2 o\ 

+ a  f R e~ " e~ o,, O X 

e~ea(R-ea) ea(2R-ea) 
+ E[~ R~ U;" r R* U; 

. II; + tJ, __ e,e~ ,,,,, . e~e~ / , e, i ~,, e~ # l 
- - U - ~ - ~ -  ~ - T ~ " - g ~  ~ - ~ r  ~j 

+G.fR+ea . . . .  (R+ea)* 0"} 

(22d) 

Also we can obtain the kinetic energy llM by 

substituting the displacement field m Eqs (2b,c) 

and (15) Into Eq. (Tb) and as follows 

1 lI~=yo~ fo [ A{ ~ + ~ + ~ + O~( 4 + 41+ 20 (eY,-e~Uzl l 
2 2 . 7 1 R - e ~ . ,  e3,d . ~ { . ,  g , .e , , , , . e~e~.4  

- R + e ~ ,  U ; ~ . I ~ .  [ R - e ~  , d , , i  

t~ , U. e2 , e2e~ , 

(23) 
.7 ( R-es . ,  4 ~,\/ . ,  U~ . e2 , , , .  eze~ \ 

. ,  Itz~/ R-e~ . ,  e, ~,i[ R+e, 

- t2e3 &e~ 2 0 +(Io-2T-2~-)0 +2~(~v,-~,v,) 
1 Ir [ . .  U., ._ e re+ ee a4/ R+e~ ~,. 0r ild,., 

where 

(24) 

As mentioned prewously, for the curved beams 

with cross sections neglecting the warping func- 

tm~ at the shear center such as L-  or T-shaped 

cross sections, the sectional properties (le., lf~, 

Ir Ir [~) m Eqs. (20) and (23) assocxated 
with warping become zero obwously Also for 

curved beams with non-symmetric closed sec- 
nons, these properties have the extremely large 
values so that those can be interpreted as penalty 

numbers in the strain energy of curved beams 
Resuttantly th~s means that strain and kinetic 
energy terms related to warping should vamsh m 
the centroid-shear center formulatmn for the 

curved beams wlth L-  or T-shaped cross sections 

or closed sections 

Based on these reasons, for the spatmlly coupl- 

ed vlbratmn and elastm analysis of  curved beams 

with thin-walled open cross sectmns having the 
warping function vamshing at the shear center or 

w~th thin wailed closed cross sections, the elastm 
strain and kinetic energy expresston can be easily 

slmphfied to Eqs (25) and (26), respectively 
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i i , i f%~ / . , +U~  eaol" 

++~.(~.,. v, ..,,.~,. o'-" o~' "~ "R ~ "'i+" R R a ] 

a , ' R+e z . R - e ,  . e~, ,  O g 

, r e  lee . . •  U, • ++++ +,, e+ o~ 

I R- e~ ,,,, e~ .,, O ~] .~.. 

and 

1 l 

•162 e s ~ , l . . { . ,  U~.ezrr,• 

g R-e~ , d . 0 

2 I.~ . {,., ~ .  ez . .  + eaea . , \  

+ R-ea . d , , U+ e ~ g + ~ R O  ) + . e., 

(26) 

On the other hand, K~m et al (2002) used follow- 

mg elastm strata and kinetic energies for the 

spatmlly coupled free wbratlon anMys~s of curved 

beam with non-symmetric cross sectloi~ inclu- 

ding the L-  or T-shaped sections based on the 

centrotd formulatmn m whmh the seven displace- 

ment parameters are defined at the centrold 

i i~=Tf +., U~' , UJ 

^ C Y r 

), 

+~-)t T ") 
, Oc~ U r . ~ +~.+.~,( v~---+-)(~+ o )j~,+, 

where 

F /f  I~a Pc , c  ~2 r  o2z I,a-B~^c- c 

and 
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+l+UI +2/~(U,~N R- 
(29) 

+ U~ e + + + U+ h i + +  

y , U ~ , + J U~ ~ ~2 y ~ e r y c -,~-~+lw+o )+,~,~v;t-r+o )jd~, 
where 

re_ r e .  1~2 I" Igaa ~c TC J r 7c _ c Ioa-Ir  (30a c) 

The transformation equations between the sec- 

tional propertms associated with warping which 

are defined at the centroid and those at the shear 

center can be obtained For this, the klnemaucal 

relationship between r and ~b defined at the 

eentrmd and the shear center, respectively, can be 

expressed as 

r 1 6 2  e 2 x a - e a x z  (31) 

Then the transformation equatmns may be ex- 

pressed as follows 

r~.--f#'m f(++e.x.-.,x,)'dA (32a) 
A A 

g~Tz) x a d A  
(32b) 

A A 

= e d 2 -  eaI2~ 

1.5. =f,/)%dA=f(~+e.xa-eaxa)x.dA. . (32c) 

= - eala + eaAa 

. f (+  [&~ = x 2 x a d A  = + ezxa e~x2) x 2 x s d A  (32d) 
A A 

= I,z~ + e2122a- e312a3 

&, = f +'x, dZ= f (++ e.x+- e+x.)xaadA 
(32e) A A 

= I~22 + e 2 I ~ 2 -  e a I ~  

Z#, = f #'.,aA= f { ~ + e.u, - e+.,) ".,aA 
" " (320 

- -  2 e a I ~ a - -  2e2eaI~.za 
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ltcrc it should be noticed that when Eq. (25) 

compares with Eqs. (27) and (26) with Eq. (29), 

one can find a drawback in the previous formu- 

lation (Kim et al., 2002), namely the elastic strain 

and kinetic energies from the centroid formula- 
tion should retain the several sectional properties 

related to the warping function which does not 

become zero at the centroid. 

3.  F i n i t e  E l e m e n t  F o r m u l a t i o n  

In the above equation, Ke is the 1616 element 

elastic stiffness matrix in local coordinate. In 

this study, stiffness mat,ices are evaluated using 

a Gauss numerical integralion scheme�9 For Eq. 
(34a), it is convenient to transform the rotational 

and axial nodal displacement components into 

the nodal components including curvature effi~et 

as following 

U.(o) oo~+ u:' (35a~ #o~= - U: (o) +~--- R " 

The Hermitian curved beam element having 

arbitrary thin-walled cross sections is used bas- 

ed on the elastic strain and kinetic energy ex- 

pressions derived in the previous Section+ Fig. 3 

shows the nodal displacement vector of thin 

walled Hermitian curved beam element including 

restrained warping effect. This curved beam ele- 
ment has two nodes and eight degrees of freedom 

per node, As a result, the element displacement 

parameters U,, Us, U~, 0 can be interpolated 

with respect to the nodal displacements, which 

the detailed expression is presented in Kim ct al. 

(2002). By substituting the interpolating func- 

tions, material and cross=sectional properties into 

Eqs. (20), (23) and (10) and integrating along 

the element length, equations of motion of thin- 

walled curved beam element are obtained in ma- 

trix form as 

( K e -  ofM+) U+=F~ (33) 

f P = - O ' ( o )  U},(o) f o  4 o)f (35b) 
R R 

U,(o) w~ (35c) 
# P = U ; ( o ) +  R g" + R 

For the evaluation of the element stiffness ma- 

trix corresponding to the transformed nodal dis- 
placements, the transformation between the mem- 
ber displacement vectors of Eqs. (34a) and the 

member displacement considering the effect of 

curvature is expressed as 

where 

U~={ u p, l. ,p, w t', co~, oo~, cog, fP, gP} (37a) 

LT~={u p, v ~, w p, ~ ,  ~e v, o~, fP, gP) (37b) 

U ~ = { u  v, V ~, W v, 097, CO~, ~a v, fq, gq} (37c) 

17 ; - {  u <', v", w ~. ~,J~, ,m~', o~, f<', .~q] (37d) 

where and 

U 
/U v, V p, W a, o~, :_of, eo~, fP, gP\) (34a) 

<'=~,u q, v ~, w q, ooL o:L aaL f~ ,  gq/ 

F /F~, Fs F•, M(, M~, Mr, M~', F~/'5 
+ = \  F~, F2 q, H ,  m~. M~, ma q, Mg, F ~ /  (34b) T1 = 

\<' /,,,, 
�9 l : r 

u;;' ",5 - f  " ~  (t~' 
f :  �9 : -  U ' . , ' U '  "%. ..... 1 / t.: . . . .  .,, " o~j .-7~ 

-., ,' ,} 

F i g .  3 Nodal displacement vector of Hermitian 
curved beam element where 
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[ 

I (3s) 
- W R  J I 

I 

1/R I 

- W R  �9 

Based cm Fq. (36), equilibrium equation (33) is 

transformed to 

(Re ~2Me) U~=F~ (39) 
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13o= , ] (4oa) 
u q, v ~, w ~, co?, ~ ,  ooL g~ 

M,, F , ~  (40b) 
Fe=~,F~, F2, F3 q, M?, M~, M~, - '  -q M~, F , , /  

Matrices and vectors in Eq. (39), respectively, are 

evaluated as 

I ~ = T T K e T ,  I~e=T~MeT 
(41a d) 

Ue -TTU~,  I~e-  TTFe 

where 

�9 [ : ; 1  ,42, 
Then the global system of matrix equilibrium 

equation for the free vibration and elastic analysis 

of non-  symmetric thin-walled curved beam may 

be obtained using the direct stiffness method. 

4. N u m e r i c a l  E x a m p l e s  

the twisting angle 0 at the shear center of mid- 

span of curved beam subjected to torsional mo- 

ment M~-10000 Ncm acting at mid span by this 

study are compared with the solutions by the 

centroid formulation in Table 2. It can be tbund 

Table 1 Natural frequency of simply supported 
curved beam with xa mono symmetric sec- 

tion (rad./sec) 

Mode This study C-formulation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1.6579 
33.049 
37.792 
40.767 
44.559 
55.998 
59Al2 
84.894 
94.375 
116.51 

1.6579 
33.049 
37.792 
40.767 
44.559 
55.998 
59.412 
84.894 
94.375 
116.5t 

In this Section, the free vibration and elastic 

analysis of curved beam with mono-symmetric 

and non symmetric thin-walled cross sections 

are performed and compared with the solutions 

obtained from a single reference line (the line 

of centroid) formulation presented by Kim at 

a1.(2002), solutions by other researchers and 

ABAQUS's shell elements. Also in subsequent 

examples, the curved beam is modeled by 20 

Hermitian curved beam elements. 

4.1 Curved beams with mono symmetric 

cross sections 
First the simply supported curved beam with 

mono-symmetric cross section for the x3 axis 

which the beam length t is 200cm and the sub- 

tended angle 0o is 90 ~ as shown in Fig. 4 is 

considered. It is well known that the in-plane 

and out-of-plane behavior of this curved beam 

is decoupled because the section is mono sym- 

metric in the plane of beam curvature. 

The lowest ten natural fiequencies by this study 

are presented and compared with the solutions 

based on the centroid formulation which all se- 

ven displacements are defined at the centroid in 

Table l. And the lateral displacement /fly and 
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"Fable 2 Lateral displacement and twisting angle 
of simply supported curved beam with x3 
mono-symmetric section (cm, rad.) 

Mode This study C formulation 

Uy -1.8911 1.89ll 

0 0.057387 0.057387 

X3 

�9 . j /  

5 c m  

(a) Geometry of a curved (b) Mono ~ymmetric cross 
beam section for xa axis 

E- -2  • 107 N/cm*, 0--7692308. N/cm 2, 

p =0.077009 N/cm a, A -- 12.5 cm ~, J = 1.04167 cm 4, 
e==0 cm, ea-8.61538 era,/2 = 133.33333 cm 4, 

Ia=67.70833 cm 4, Iz22-- 100 cm ~, 
[=as-- 41.66667 cm 5, I~=641.02564 cm ~, 

I~2a=641,02564 cm ~, I,~2-- 486.93294 cm r 
(c) Material and sectional properties 

Fig. 4 Simply supported curved beam with mono 

symmetric cross section for xa axis 
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fl'om Tables 1 and 2 that the natural  frequencies 

and tile displacements by this study coincide ex- 

actly with the solutions based on the centrold 

formulation.  

Table 3 Natural frequency of simply supported 

curved beam with x2 mono symmetric sec- 

tion. (rad+/sec) 

Mode ]'his study 

1 3.9294 

2 27.940 
3 73.536 

4 87.308 

5 91.445 
6 [38.77 
7 t48.30 

8 t58.23 
9 219.67 

10 22)§ 

C-formulation 

3.9294 

27.940 
73.536 
87,308 

91.445 
138.77 
148.30 

158.23 
219,67 

I 225.27 

Table 4 Lateral, vertical displacements and twisting 
angle of simply supported curved beam 

with x~ mono-sylmnetric section, (cm, lad.) 

Mode I This study C formulation 

U:, J - 1.8329 1.8329 

[]z / --0.11859 --0.11859 

7 0 0.11398 0.11398 

3Q~ 

X ~ 0 . 5  c'nl 
, 

5 CHI L . . . .  b- X2 

',4 --'~1 
2 (,m 

(a) Mono symmetric cross section for xz axis 

E - ' 2  • l07 N/cm 2, (2 7692308. N/cm ~, 

p=0.077009 N/cm a, A - 4 . 5  cm 2, ]=0 .375  cm 4 

e2 = - 1.15033 cm, #a=0 cm, I 2 -  I7.70833 cm ~, 
[~-- 1,77778 cm ~', ]~2a 4,62963 cn't ~, I~aa-- 1,23457 em ~, 

i~ 7.84314cr n6,J~a = 7.84314cme 

(b) Material and section properties 

Fig. 5 Simply supported curved beam with mono- 

symmetric cross section for x2 axis 

Next, Fig. 5 shows the mono-symmet r ic  cross 

section for xe axis and its material and sectional 

properties of  simply supported curved beam, in 

which the subtended angle and the beam length 

are 90 ~ and [00 cm, respectively. In this case, the 

vibrat ional  and elastic behavior  of  curved beam is 

spatially coupled because of  the mono symmetric 

cross section for x2 axis. In Tables 3 and 4, the 

spatially coupled natural frequencies and the dis- 

placements at the shear center of  loading point 

of  beam subjected to M l - 1 0 0 0 0 N c m  acting at 

mid-span  are given and compared.  The excellent 

agreement between results based on two formula-  

tions is evident. 

4.2 Curved beams with non-symmetric  cross 

section 

In this example, the non symmetric curved 

beams with clamped free and d a m p e d - c l a m p e d  

boundary condit ions at the both ends are consi- 

dered. Figure 6 shows 1he configurat ion of  non-  

symmetric cross section and the material and 

sectional properties. First, the lowest ten spatially 

coupled natural frequencies for canti levered and 

clamped curved beams for subtended angle 10 ~ 

J~ 

" 1  
H c m  L X2 

cil] 
! 

4 CII] 
(a) Non-symmetric cross section 

E -294300  N/cm 2, G=112815 N/cm 2, 

0=0.077009 N/cm 3, A - 7  r 7, J=0.58333 cm 4, 

e~= 1.44846 cm, ca-- --2.04461 cm, /a--67.04762 cm ~, 

_/a = 8.42857 cm 4. /2a--9.14286 cm a, /22a=52 24490 cm 5, 

/22a 20.02721 em ~, G2a-- 17,41497 cm ~, 

/ass= -- 13.38776 em 5, Ir cm ~ 
l~a2 24.493~3 em ~, 1~o~----42 48004 cm ~, 

t~,a~-- -- 10,53165 em 6, [r 117.44909 cm 7, ] --200 em 

(b) Material and section properties 

Fig. 6 Cantilevered and clamped curved beams with 

non-symmetric cross section 
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Table 5 Natural frequency of cantxIevered curved beam with non-symmemc section, (rad/sec) 2 

Vibration mode 
0o 

1 2 3 4 5 6 7 8 9 10 

This study 00290 02686 05963 15252 51373 77437 17 386 20 622 27 159 52 343 
Klm et al 

10 00290 02686 05963 15252 51373 77437 17 386 20 622 27 159 52 343 
(2002) 

ABAQUS 00299 02670 0 5887 1 5265 5 0520 7 7433 16925 20 575 26 645 52 892 

This study 00062 0 2061 0 2901 2 0272 5 2138 7 3645 |7.473 32 844 37 949 47 720 

Klm et al 
90 00062 02061 02901 20272 52138 73645 17473 32844 37949 47720 

(2002) 
ABAQUS 00060 02043 02779 21714 50293 71815 17079 32 233 36 624 43 574 

Table 6 Natural frequency of clamped curved beam with non-symmetric sectton, (rad/sec) ~ 

Vibration mode 
0o 

1 2 3 4 5 6 7 8 9 10 

Thlsstudy 09488 44120 63262 17731  18778 21295 49 633 59 534 99 774 11958 
Klm et al 

10 09488 44120 63262 17731  18778 21295 49633 59534 99774 11958 (2002) 
ABAQLIS 09679 4 3543 64045 16 946 18 565 21 369 50 231 58 585 10044 105 01 

This study 0 7223 3 9916 13 570 31 829 35 223 41 852 71 047 80 658 138 20 148 88 
Klm et al 

90 0 7223 3 9916 13 570 31 829 35 223 41 852 71 047 80658 138 20 148 88 (2002) 
ABAQUS 07020 39088 13388 30838 34855 37792 69831 78659 11515 14053 

Table 7 Lateral, vertical displacements and twisting 

angle of clamped curved beam with non 
-symmetric section, (cm, rad ) 

Mode This study I C-formulation 

Uy - 1  4185 

U~ 
--1 4185 

0 12054 0 12054 

0 0 16893 0 16893 

and 90* with keeping the total length of  beam 

constant by this study are presented in Tables 5 

and 6. respectively For  comparison, the previous 

solutions based on the centrotd formulation (Ktm 

at a l ,  2002} and the results obtained from 300 

nine noded shell elements ($9R5) of  ABAQUS 

which is the commercial finite element anaiysls 

program are given From Tables 5 and 6, it can be 

observed that the centrold-shear center formula- 

tlon proposed by this study for the vibration 

analysts of curved beam with non symmetric 

cross section is accomplished Also results by 

this study are m a good agreement with those by 

ABAQUS's  shell elements Additionally the lat- 

eral Uy, vertical Uz displacements and the 

twisting angle 0 at the shear center of mid-span 

for clamped curved beam subjected to a torsional 

moment 1000 Ncm at the mid-span are presented 

together with the results based on the centrold 

formulatmn in Table 7, where exact agreement lS 

observed for the spatially coupled elastic analysis 

of curved beam with non-symmetric cross section 

4.3 Curved b e a m  wi th  L - s h a p e d  cross  s e c -  

t ion 

We concern the free vibration and elastlc an- 

alysts of the L shaped curved beam as shown in 

Fig 7 The purpose of this example Is to show the 

usefulness of the proposed curved beam theory 

with non-symmetrtc section neglecting warping 

deformation and to verify how ~t predicts well the 

behawor of  structure by comparing the present 

solutions with those by ABAQUS's  shell elements 

and the previous researches The curved beam is 

the clamped at the both ends and subjected to 

Copyright (C) 2005 NuriMedia Co., Ltd. 



Thin Wa/ led  Curved  Beam Theory Based  on Centroid Shear  (.'enter Formulation 601 

x:~ Table 8 
& 

, , ,  1 2 . 7  c r n  15 l n j  

..~[ .... " . . . . . . . .  

~: ~ ' "x- 1,27 c,n Mode 
4 . 4 5  R N |  �9 i {0  5 h~)  l 

6 , 3 5  c m  ! {.I 0 0 D  lb| 
1) ; I 1 . 2 7  t i n  2 (2.5 
_v_ " ~  o.5 m 3 

4 (a) Non-symmetric L-shaped cross section 
5 

E=20684.28 kN/cm 2, G=7955.49 kN/cm 2, 6 

0=0.077009 N/cm a, A=24. 1935 em 2, 7 
jr= 13.00723 c m  4, Oz = --4.23333 cm, 8 

es -- 1.05833 cm, la--81.29520 tin ~, /a--433.57440 cm 4, 9 
/23 108.39360 cm 4, /a~2 229.43312 cm s, 10 

h2a-- --229.43312 cm s, /;?--914.4 cm, /=609.6 cm 

(b) Material and section properties l e~ 

Fig. 7 Clamped curved girder with non-synlmelric 

L-shaped section 

out o?p lane  lateral force 4,45 kN (10001b) ac- 

ting at the mid span. In Table 8, the lowest 

ten spatially coupled natural frequencies by this 

study using Eqs. (25) and (26) are reported toge- 

ther with those by previous research using Eqs. 

(27) and (29), which several sectional proper- 

ties may be needed additionally for analysis and 

with those obtained from 240 shell elements of 

ABAQUS. From Table 8, it call be fmmd that 

present solutions coincide exactly with those by 

previous research based on the centrold formula- 

tion and for comparing with results by ABAQUS, 

excellent agreement is observed with less than 

2.2% as maximum of difference. It should be 

noted that the present curved beam theory with 

non symmetric cross section which the warping 

function is zero at the shear center eliminates the 

sectional properties of structures for the dynamic 

analysis of curved structures. 

Next, the lateral displacement Uy at the corner 

of the L-shaped cross section along the curved 

beam subjected to out o?p lane  lateral force is 

evalualed and plotted in Fig. 8. By considering 

the symmetry, 10 curved beam elements are used. 

For comparison., the results using Eq. (27) and 8 

HMC2 curved beam elements by Gendy and 

Saleeb (1992) based on the centroid lbrmulation 

and tile solutions using 24 quadrilateral shell 

elements developed by Saleeb et al.(1990) are 

Natural frequency of clamped curved beam 
with L-shaped section, (rad./see)Z 

This study " C formulation ~ ABAQUS 

5.6246 
60305 
10.792 
17.427 
19.116 
23.800 
28.498 
30.329 
34.996 
36.862 

5+6246 
6~0305 
10.792 
17.427 
19.116 
23.800 
28.498 
30.329 
34.996 
36.862 

5~5925 
6.1635 
II.00t 
17.224 
19.461 
23.917 
28.332 
30.585 
34.712 
36.129 

"-- I}7 

L~ 

E 
:~ 05 

c,. 
m 1~4 

74 

(I 2 

Fig, g 

' -  (: '(;)fill tl la[~,Mi 

. ,  113.1(72 iGr  al, d Sa leeh  19'J2~ ,.,. e~ 

Ill Shell  cl~n~r ~ ISk[]ci'b ~'.r cZl. 19Vii/ �9 5:I7 ~./" 

' S  

I j  
, /  

.z 

/ ) '  

/ 
?4 

/ 

m. / 
. /  

j,.. 

3" / 

, 2 1  Z~" 

1 i �9 i l i i r i 

~) ! i~ ~ IJ ~ [I I U }  D II [J 7 t O. ~, !! ) 

Lateral displacement at the shear center of 

[.-shaped girder 

presented, investigation of Fig+ 8 reveals that 

presenl solutions using Eq. (25) are in a good 

agreement with those obtained from HMC2 ele- 

ments and shell elements. 

4.4 Curved box girder with non symmetric 

cross section 

In our final example, the non-symmetric curv- 

ed box girder as shown in Fig. 9 is considered. 

The girder is simply supported at the two ends 

and is subjected to an eccentric lateral force 89 N 

(201b) at the exterior web of mid-span, Because 

tlle material properties of plexiglass are time 

dependent, a series of preliminary tension and 

bending tests were performed Oll specimens cut 
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i . ~ ' � 9  27;; 7;; .7 I;;7;;LTL;;L.7-..~. 
. . .Y  ... ~ . . . . . . . . . . . . . . . .  q,. .A'>., ,  

/ /  ~ ;7:" �9 ;.~ . . . . . . . .  : ............... ' .  ",b'~ -, ,.~,~ .oq:~'.::, ...;.:.:. . . . . . . . . . . . . . . . . . . . . . .  :::.:...,. ~;s " . . : . .  

,;7 / 
'"x / /  

" \  a ~ , R  = 106 68 eln 
\ ~ i  [42 11t1 

(a) Plane view 

45 .72  cm C18 Inl 

8 9  N [ 20  I1:,1 ; 
0 6 0 7 1  
(0 ,239 

~ i  i ,  t l  ................ ~,,t-.-.-.......~ 
7 . 6 2  r 3 0 4 8  ( ' n l  { 1 2  l l l l  7 . 6 2  c n t  

1 1:1 h t l  r] I l l )  

~ R = 129.54 eft~ "N 
{51 inl 

Fig. 9 

13 6248 cm 
[0.246 i n )  

2~ 12.5 l l l l  

0.4953 cm 
( 0 . 1 9 5  i t l l  

(b) Non-symmetric box section 

Simply supported non symmetric curved box 

girder 

0.'~0 

I145 - 

2.,  

,A 

I) 3fl 
a 
~a 0.25 

~20 

015 

I) lfl 

0 .b~,', 

P[r162 5t1'07 
O C-fl)rlt ulalioa 
A Ids ((]tl/dy and Sa{eeL 19923 

[] 15xp (Fai~ anti r~rkstra, 197(11 
�9 S~lefl elemenis (Fanl and T,lr~sm,. 1e~76) 

y ~ "  ~e- 

/'4" 

/ 

/ 
p/ 

/ 

~.1) ~} f l  "l i t n n " [ 1 F I 

r!0i) 0 i)$ 0.10 0.] 5 rl ") (i 25 0.1(1 0.I ~, f~4{t rl~.S II 5(1 

x/l 

Fig. 10 Vertical displacement along the external web 
of a curved box girder 

from the same sheet as the model sections. As a 

result of test, the material properties are taken 

as E--275.97 kN/cm 2 (400 ksi) and poisson's 

ratio v=0.36. To prevent the distortion of cross 

section of box girder, two end diaphragms and 

four intermediate diaphragms at angles of 15 ~ , 

35 ~ , 55 ~ , and 75 ~ from the lines of support are 

installed. By considering the symmetry, one half 

of span is modeled by 10 elements. Out-ot~plane 

lateral displacement of the top flange at the loca- 

tion of the exterior web of rnidspan is shown 

in Fig, 10. For comparison, the results by the 

centroid formulation, 10 HMC2 elements, ex- 

perimental results and FE solutions using shell 

elements by Fam and Turkstra (1976) are pres- 

ented. From Fig. 10, it can be found that present 

results are in a good agreenlent with the com- 

parisons reported. Consequently the analysis neg- 

lecting the warping deformation results in an 

excellent fit to the behavior of curved box girders. 

5. C o n c l u s i o n s  

A centroid shear center formulation for the 

spatially coupled free vibration and elastic an- 

alysis of thin wailed curved beams with non-  

symmetric open and closed cross sections is pro- 

posed. This theory overcomes the drawback of 

previous curved beam theory based on the cen- 

troid formulation which should account tbr sec- 

tional properties additionally for curved beams 

with L- or T-shaped sections. In numerical exam- 

ples, FE solutions using Hermitian curved beam 

elements by this study are compared with those 

obtained from the centroid formulation and the 

results by available references and ABAQUS's 

shell elements. Consequently, the following con- 

clusions may be drawn. 

(!) The vibration and elastic theories of the 

thin-walled curved beam neglecting the restrained 

warping torsion at the shear center may be easily 

derived fiom the thin-walled curved beam theory 

based on the eentroid- shear center formulation 

by putting the sectional properties associated with 

warping to zero. 

(2) For vibration and elastic analysis of curv- 

ed beams with mono symmetric and non sym- 

metric cross sections, the solutions by this study 

coincide exactly with those from the centroid 

formulation. 

(3) For curved beam with L-shaped cross sec- 

tion, the natural frequencies and the displace- 

ments obtained flom this curved beam elements 
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Thin- Walled Curved Beam Theory Based on Centrold-Shear Center Formulatwn 603 

are m excellent agreement wath those fi'om curv- 

ed beam elements including the warping and 

ABAQUS's shell elements Resultantly it is be- 

heved that this study chromates total sectmnal 

piopemes of structures for the dynamic and elas- 

tic analys~s of curved structures 
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