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To overcome the drawback of currently available curved beam theories having non-symmetric
thin-walled cross sections, a curved beam theory based on centroid-shear center formulation 1s
presented for the spatially coupled free vibration and elastic analysis For this, the displacement
field 1s expressed by introducing displacement parameters defined at the centroid and shear
center axes, respectively Next the elastic stram and kinetic energies considening the thickness-
curvature effect and the rotary inertta of curved beam are rigorousty derived by degenerating the
energles of the elastic contmuum to those of curved beam And then the equilibrium equations
and the boundary conditions are consistently derived for curved beams having non-symmetric
thin-walled cioss section It is emphasized thai for curved beams wrth L~ or T-shaped sections,
this thin-walled curved beam theory can be easily 1educed to the solid beam theory by sunply
putting the sectronal properties associated with warping to zero In order to tllustrate the validity
and the accuracy of this study, FE solutions using the Hermutian curved beam elements are
presented and compared with the results by previous research and ABAQUS’s shell elements
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complex because the axial, flexural and torsional
deformations are coupled due to the curvature
effects as well as non-symmetry of cross section,
Investigation mto the behavior of thin-walled

1. Introduction

Curved beam structures have been used 1n

many mechanical, aerospace and civil engineering
applications such as spring design, curved wires
m nussile-gmdance floated gyroscopes, curved
ender bridges, brake shoes within drum brakes,
tire dynamics, stiffeners in aircraft structures, and
turbomachinery blades It can also be used as a
simplified model of a shell structure

In general, the vibrational and elastic behavior
of thin—walled curved beam structures are very
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curved members has been carried out extensi-
vely since the early researches {Vlasov, 1961,
Timoshenko and Gere, 1961) and particularly
maonographs by Dabrowskr (1968), Herns {(1675)
and Gyelsvik (1981} are worth remarking as use-
ful references for curved beam theory and 1s
applications

Up to the present, considerable researches
{Lee, 2003, Raveendranath et al, 2000, Wilson
and Lee, 1995, Gupta and Howson, 1994) on
the free in-plane vibration of curved beam have
been done considering the various parameters
such as boundary condifions, shear deformation,
rotary 1nertia, variable curvatures and variable
cross sections, And the researches for the de-
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coupled free ouwi-of-plane vibration behavior of
curved beam have been performed by several au-
thors {Chucheepsakul and Sactiew, 2002 , Piovan
et al,, 2000, Cortinez and Piovan, 1999 , Howson
and Jemah, 1999 ; Kawakami et al, 1995} Also
Kang and Han (1998) presented the closed-form
solution and a numerical solution for the de-
coupled out-of-plane static analysis of a curved
beam with circular cross section subjected to tor-
que by the differential quadrature method

It 15 well known that the thin-walled straight
beam theory with non-symmetric cross section
based on the centroid-shear center formulation
15 established, 1n which s axial, flexural and
warping-torsional deformations are decoupled
Hence the warping—free theory for straight beam
with non-symmetric thin-walled section 15 easily
obtamed from the thin-walled beam theory by
simply putting the warping moment of mertia to
Zero,

On the other hand, for the elastic and stability
theortes of curved beams based on the centroid-
shear center formulation, most of previous re-
searches (Kang and Yoo, 1994, Yang and Kuo,
1987, 1986) have been resincied to those with
doubly symmetric thin-walled cross sections Fur-
thermore it has been reported by Gendy and
Saleeb (1992) that the curved beam theory based
on the centroitd-shear center formulation 1s valid
only for a cross section having doubly symmetry
or one axis of symmetry which lies m the plane
of beam curvature, otherwise, coupling terms
still exist For this reason, 1t appears that most of
thin-walled curved beam theories with non-sym-
meetric cross sections have been developed based
on displacement parameters which are all defined
at the centroid axis (Kmm et al., 2002, 2000a, b,
Hu et al, 1999, Gendy and Saleeb, 1994, 1992,
Saleeb and Gendy, 1991 ; Kim et al,, 2002} pre-
sented analytical and numerical solutions on a
spatial free vibration of thin-walled curved beam,
as a separated curved structure, with non-sym-
metric section neglecting shear deformation effects
and Gendy and Saleeb {1994) presented an effec-
trve formulation on spatial free vibration of arbi-
trary thin-walled curved beam by including the
shear deformation and rotary inertia. However,
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they partially considered the effect of thickness-
curvature and shear deformation

It 1s mportant to note that these centroid
formulations for the vibration and elastic analysis
of thin-walled curved beam with L- or T-shaped
cross sections have a drawback to evaluate the
several sectional properties associated with war-
ping additionally because the warping function
of cross sectron at the centroid does not become
zero To the best of my knowledge, Tong and
Xus study (2002) was only the recent attempt
reported on the curved beam theory with non-
symmetric cross sectton based on the centroid-
shear center formulation in the literature. How-
ever they did not consider the thickness-curva-
ture effect which made the difference become
larger 1n curved beam with large subtended angle
and small radius and was restricted to only the
elastic analysis of curved beam

The main purpose of this paper is to present a
curved beam theory with non-symmeéiric cross
section based on centroid-shear center formula-
tion, m which the axial and flexural displace-
ments are defined at the centroid and the lateral
and warping-torsional displacements at the shear
center, respectively Particularly for curved beams
with L- or T-shaped sections, thig thin-walled
curved beam theory can be reduced easily to the
theory neglecting the restrained warping torsion
by simply putting the sectional properties ass-
ocrated with warping defined at the shear center
to zera Also for the curved beam with non—sym-
metric closed sections, this beam theory may be
reduced naturally to that with neglecting warping
deformation because the values of sectional prop-
erties associated with warping at the shear center
become extremely large. The mmportant points
presented are summarized as follows

{1) The displacement field for non-symmetric
thin-walled curved beams with constant curva-
ture 15 introduced, 1n which the axial displace-
ment and two flexural rotations are defined at the
centroid and the torsional rotation including the
normalized warping function and two lateral dis-
placements are defined at the shear center, re-
spectively
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(2) Next force-deformation relations due to
the normal stress considering the thickness—curva-
ture effect are accurately derived at the general
coordinates.

(3) And then the elastic strain and Kinetic
energies based on the centroid-shear center for-
mulation are newly derived for the free vibra-
tien and elastic analysis of non-symmetric curved
beams having thin-walled open and closed cross
sections, respectively.

(4) In addition, FE procedure using the He-
rmitian curved beam elements is presented for
the analysis of non-symmetric curved beams.
Finally to demonstrate the validity of the pro-
posed study, numerical solutions are presented
and compared with the results by available re-
ferences and ABAQUS’s shell elements.

2. Curved Beam Theory Based on the
Centroid-Shear Center Formulation

To degenerate a spatially coupled free vibration
and elastic theories for the continuum to those
for the thin-walled curved beams, the fotllowing
assumptions are adopted in this paper.

(17 The thin-walled curved beams are linearly
elastic and prismatic.

(2) The cross section is rigid with respect to
in-plane deformation except for warping defor-
mation.

{3} The axis of curvature does not necessarily
coincide with one of the principal axes.
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{a) Displacement parameters

2.1 Kinematics

In this study, two curvilinear coordinate
systems are adopted to derive a general theory for
free vibration and elastic analysis of thin-walled
curved beams consistently. Fig. | shows the first
coordinate system (X1, X2, Xa), in which the x1 axis
coincides with the curved centroid axis having the
radius of curvature & but xs x3 axes are not
necessarily principal inertia axes. While the sec-
ond coordinate system (xf, x5, x5) is constituted
by the shear center axis and two orthogonal axes
running parallel with the direction of xa, x3 axes
(sce Fig. 2). Also x§ and x4 arc principal inertia
axes defined at the centroid. Then transformation
equations between 1wo coordinates systems may

be expressed by

n=xf {1a)
xe=xi+e=xf cos y—xfsiny (1h)
xm=xites=x{siny+xf cosy (lc)

where (e, @) denotes the position vector of the

X2y R e Y

Fig. 1 A curvilinear coordinate system for nen
-symnetric thin-walled curved beam
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w1 s
M 25 Z
-
. A0
Fi "
C Mév X2

£y

(b} Stress resultants

Fig. 2 Two coordinate systems, displacement parameters and stress resultants
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shear center and ¥ 1s the angle between x» and the
x4 axis

To introduce the displacement field for the
non-symmetric thin-walled cross section, seven
displacement parameters and stress resultants are
used as shown m Figs 2(a) and 2(b), re-
spectively Assuming that the cross section 1s rigid
with respect to in-plane deformatron, the dis-
placement field can be written as follows

Uh= Us+ %awa— %aws+ Fp {2 %a) (2a)
h=U— é (xages) (Zb)
Us= U+ 0 {2—e) (2¢)

where {Jy, @2, ws=the rigid body translation and
two rotations with respect to x1, X2, X3 axes; @,
U, U=the rigid body rotation and two trans-
lations with respect to xf, x5, x§ axes, f, $g=the
displacement parameter measuring warping de-
formation and the normalized warping function
defined at the shear center, respectively For later
use, sectional properties with respect to the cen-
troid-shear center are defined as

L= foz dA, k= j s} dA, b= [ e dA

1= L 5 dA, In= fA 9o dA, Lp= L b1z dA
(3a-1)
Fomp= AJC33 dA, Iazs= szxsz dA, byy= szzxs dA

fan= .L o33 dA., L= L Praxs dA, Lgge= _/:q xs dA

where A, I, I; and L;—the cross sectional area,
the second moments of mertia and the product
moment of tnertia about Xz and xa axes, respec-
tively Js=the warping moment of inertra It
should be noticed that lsp, Iy are always equal
to zero and Fos, Fosa, Frws. Loez, Ioa, Joge denote the
sectional properties to consider the thickness-
curvature effect which makes the difference be-
come larger 1n cuived beam with large subtended
angle and smali radius

2.2 Principle of virtual work
With the assumption of the rigid in—plane de-
formation, stress resultants with respect to the
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centroid-shear center axes aire defined as follows
Fi= [0 dA, Fi= [t dx, Fi= [0 dA
A A A

Ml:j;[fm(im—ez) ~ta(ms—e) |dA
{4a-h)
M?,: Lﬁ\x;’; dA, M's:'—' L‘{ux?, dA, M,: fAT11¢ dA

Me= 'ﬂl’zz(ﬁ,z + ﬁa( ba —ﬁg) }EE%— dA

where Fi=the axial force acting at the centroid ,
F> and Fy=the shear forces acting at the shear
center , Mi=the total twisting moment with re-
spect to the shear center axis, M. and Ma=the
bending moments with respect to xz and xs axes,
respectively Mr and M,=the restained {non-
uniform) torsional moment and the bimoment
about the shear center axis, respectively

The punciple of virtual work for the general
continuum vibrating harmonically 1s expressed as

[, av-a [pUsU. dv=[T3U.dS (5)

where e,,=the conventional linear strain due to
U, . p=the density, @w=the circular frequency,
T,=the surface force The first term denotes the
conventional internal virtual work giving the elas-
fic strain energy and the second term represents
the kinetic energy In case of the thin—walled
circular beam, Eg (5) may be transformed to
the principle of the total potenual energy I as
follows

H:HE*HM"Hexr (6)

where the detarled expresstons for each term of

IT are

!
Hz=‘é“fo L[T11€11+21'12€12+21’13813] R;xs

dA dx (73.)
HM:%‘JWZ,/,:I[U?-I- Ui+ U?]J%Cg“dﬂl dx, (7b)

Hext :% UgFe (7(3)

where Ue, Fo=the nodal displacement and nodal
force vectors, respectively
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On the other hand, stramn-displacement rela-
tions due to the fust order displacements are
expressed as follows

O
“xz(ﬁ%*“wé)ﬂswéw’} Rim
U R
2ep=-52+4 Uy
R+4x, (8b)
=[5~ (x 1R+x —wst fh
2813'—(U31 %1) Ri + U

z[ﬁ % + Uz + 0" (x

2 &) "% w:  (8c)
S s ¢] fo ot féa

For thun-walled circular beams subjected to di-
stributed loadings, by substituting linear strains
{8a—c) mto Eq {7a} and integrating over the
cross sectional area, Eq (7a) s reduced to the
following equations

Memg [ TR (U5 ) bk - it

+B{ V-0 w3+‘53 &)
U (9)
+F3( PHUtet o %f)
A AT e f)]dxl
And Eq {7c) can be expressed as
1
Hext:j; [plUI+P2Uy+P3UZ {10)

+ s+ mawst+ m3w3+m¢;f} a’x;

wheie P1, pr, fu are the distributed forces 1 the
direction of xy, Xa, Xz axes and #n, Mg, s, s
denote dstributed moments

Now by wnvoking the stationary condition of
the total potentizl energy, equilibrium equations
and boundary conditions are obtained as

Ff+—§izwm (11a)
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Fi=—m (11b)
];: R =—py (11¢)
%F,+Mf+M3=—m1 (11d)
—F+M=— (11e)
R+ R~y %‘%—Mé:“ (11
B el @ g e
R B+ -+ B M: (11g)
“MR+M5;=“
and
SU{0) =8UF or Fi(o)=—F¢ {12a)
SULN=8Uf oo Fi(ly=F (12b)
8U,(0)=8U? or Ey(o)=—Ff (12¢)
SULD =80 or F(l) =F# {12d)
U () =8UF or Fs(o)=—Ff (12e)
SUL(D=38U72 or Fy{)=F¢ (126
836 (0) =6866% or My (o) =—M¢ (12g)
S36{H =609 or M{]) =M {12h)

San(0) =8ah or Malo)=—Mf (121}
Sws () =38wi or Mo{]) =MF (127}
Sws(0) = 8wk or Ms(o)=—M¢ (12k)
Sws(l) =dwd or M:(l) =M (121)
8f (o) =8/ or Me(0) =—M§ (12m)

S =617 or Ms{I) =M§

2.3 FElastic strain and kinetic energies of

thin-walled curved beam

Now force~deformation relations due to the
normal stress are derived In this study, the shea
deformation effects due to both the shear foices
and the restrained waiping torsion are neglected
Therefore, the shear ngidity constramts 1n Eq
{(9) are as follows

U:_ €3 6:? — P
v Ct)a'”ﬁ(t)a"F?f—"O {13a)
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_ U

St Uit ot paa— 8 f=0  (13b)
G+ +f f=0 (13¢)

Form Eq (i3a-c), the rotational displacements
@ws, @y, and the warping parameter f may be re-
written with respect to Uy, U, Uz, 8 as follows

o= % —Lg-U-E (4
ws=F— 93 — es o (14b)
r=-L Blay (14c)

Accordingly we can rewrite the displacement field
U Eq (2a) using Eqs (l4a-c)

U=U—={(1-%) ;—%ﬁz o}
—n{—tE L g a2 ) ()

[a(i+g)e)e

Also the normal strain ey can be obtamed by
substituting Egs. (14a—c) into Eq (8a} And then
by substituting Eq. (8a) mto Eqs (4a), (de),
(4f), (4g) and integrating over the cross section,
the following force-deformation relations due to
the normal stress are obtamed

;[2_ gjz fzs ﬂﬁ
A R R R
13! I Loz
w|_| & bR
=E .
My s _p o f Am
M, R R
de I les
Frd R R ¢
- I < (16a-d)
Uz [
Us+ b RH
Ux €2 # & €263 pn
R R Ul
R—e - a 5,, f
R R
_ﬂ_R"'eﬁ 8/!
R R
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where F=the Young’s modulus and

L=hL— Im , [y= ——%i (17a,b)
f23=123—%, f¢=I¢— f;sz {17¢,d)

And the St Venant torsional moment 1s expressed
as

Ma=G] (G+EE2 o) )

where (G=the shear modulus and J=the tor-
sional constant In evaluatmg Eqs (16a-d), [
and lp3 vamsh and the following approximation
1s used

R _ % (%)
Rtm ) R+(R) (19)

Consequently substitution of force-deformation
relattons (16a-d) and (18) mto BEq (9) leads to
the elastic straimn energy of the thin-walled curved
beam with non-symmetric cross sectron,

= [ [EA(U’ b_agf

‘|'Efz( é U Uz 9223 ol g & H)

Y3
+E13( - @agn_i)
T
+2EI};(R P %_e}ﬁaf o )(R g e; rd)
S pefipe 4 h

Now by eliminating Fy, Fs, Mz from Egs (l1la-
g), equilibrium equations of curved beams be-
come

Mz _ Wy

A+ R ——Pl—ﬁ (218.)
— o pyay

_R+te (21b)
T T R R 152+ 7’”/5 m3

m%+Mz”=—pa—mé {21c)
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=3 263 & tes ,«;
RE+~—R M+R+ 7 M+ MY
el Y (219)
—%gbg—m;— %3 y— 1

And substitution of Egs (16a-d) and (18) 1nto
Egs (2la-d) results 1n

EA(v+ -2 g)=—p-"2

R R (22

ﬂEfz( %] mr U!rﬂ _I_ U” | 6223 5”” &2 3”)

R™HNER R R
+Ef3( R ] U/m 63 6.’”{_%)
. (e(R— A
T Y
L ezes(}f;—ea) P % ﬁ,,) (22b)
Ef\ﬁ ( w’ R+eﬂ rl)
B (U4 Blay
R
_R}-I{"es 152+ '~ i
B{-gur-g -2 G-
3233 9mr+ ‘;22 (1____) {9” ﬁ} ( )
22¢
—EIZ;( RRQS " RR & +@3 6””+ H _I_ }?3)
EA Uz 22078 VR
o a Uke e Lt
S BA( U5 o)+ B ey~ 505
" R 83 2 &_ sz Zeﬂ ”_ﬁ
ResUy + =5 Ui+ anddff "+ =50 Rzﬂ)
+EIS(R 383 _5” Igz)
| Ef%[ eges(}};f es) i (21; e . (22d)
+_{_J§_+ Uz+@g,,,,+e§%e;(2_é)5” le }
+G]{R+es Jr(Rirez) 5,,}
_Efﬁ( Uh"'l R;ea 3,,,,)‘:_?31)27 “—%mz W

Also we can obtain the kinetic energy [Tu by
substituting the displacement field in Eqs {2b,c)
and (15) mto Eq. (7b) and as follows

Hy%paﬁ f !{A Ui+ U+ U+ B lditab +28(el)~ al))
R 2]

HE{ 0 26") A ]

LA
T L 14

by U o, oo,
2RUx(U; R+RU,+Ra)

nl( L8 - L ) -y o0 )

+(fo—2%—zi’*@) 0%21(1@&—120»

bl egusttoten

(23)

where

1233
R 3

Py
R

Lyt b
R

f2=13"|' L Ia—]s 1?23:1231‘

(24)

f¢:I¢+ I;gz s fo:IZ"i'Ia‘f‘

As mentioned previously, for the curved beams
with cross sections neglecting the warping func-
tion at the shear center such as L- or T-shaped
cross sections, the sectional properties (1e., Ia,
Loz, Lyna, fqb) m Egs. (20) and (23} associated
with warping become zero obviously Also for
curved beams with non-symmetric closed sec-
tions, these properties have the extremely large
values so that those can be interpreted as penalty
numbers in the strain energy of curved beams
Resultantly this means that strain and kinetic
energy terms related to warping should vamsh
the centroid-shear center formulation for the
curved beams with L- or T-shaped cross sectiotis
or closed sections

Based on these reasons, for the spatially coupl-
ed vibration and elastic analysis of curved beams
with thin-walled open cross sections having the
warping function vanishing at the shear center or
with thin-walled closed cross sections, the elastic
stramn and kinetic energy expresston can be easily
stmplified to Eqs (25) and (26), respectively
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=5 [EA(U’% 7

2
+Ef,(ez g +U”+€§§’B” ?8)

s - EV oS ng) o)

R
+2EIE(IE§ U+ ;’+g§+e§3 g f;, 3)

(R = U” 93 3” )}ﬂ'ﬁ

and

=
i

Lo [ (AT T4 4 128 el -elh)

ey f;a’) +1f ;~%+%U;+%9')2

b Ee - b L iu-n

—zﬁUx( ;—%+§ )

{2 oo e

+(Io—2%fi42%@) Hz}dxl

M

(26)

On the other hand, Kim et al (2002) used follow-
g elastic strain and kinetic energies for the
spatially coupled free vibration analysis of curved
beam with non-symmetnc cross section wnclu-
ding the L- or T-shaped sections based on the
centrord formulation i which the seven displace-
ment parameters are defined at the centroid

=1 [ [a(ve S vmt{ g+ UC)
i (Lve)

+2BD U:"+£:)( Uy"——)+Ef$(Tf+ g )2 (27)

+EL{Us -

+zEfsz(Uz+ )( Y H}‘)
“25fs( ;- )( U g )]dxl

where

fimt-Bo fomp - fmpp T (50

and
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Hrfr:ljpw f [A(U“+U“+U°’) +Iz(UL’ U")

2k Ly o v )]
LS+ U5 U5~ Ul + UEEF)
w22 g (-2 1
415 ( o) ol - U*)(L’dw“)

iy Ux( Uy +5C)+2I¢3U'( U +5C)]dx1

(29)

where

o=+ B2 B+ 538 (3000
The transformation equations between the sec-
tional properties associated with warping which
are defined at the centroid and those at the shear
center can be obtained For this, the kinematical
relationship between ¢° and ¢ defined at the
centroid and the shear center, respectively, can be

expressed as

f=r+4,

PC=d+exs—esxz (31)

Then the transformation equations may be ex-
pressed as follows

= fq&"‘?dA: f ($+ exxs— exxs) *dA
A A

(32a)
=I¢+822]2+€§13_‘2€2€3123
= f $rd A= f (tem—emd A0
= ez[z e3ln
1= [ d%ndA= | (d+ eaxs—esxs) x20A
@ [ 2 :q/‘ 2 342, 2 (32(:)
=—gh+al
Iin= [$mdA= [($+ exrs—eses) maasdA
1 A (32d)
= Lo+ ooz — €303z
Iie= [#2dA= [($+exs—ewn) ddA
A A (323)
=lsm+ es o — €3bos
L= [$7xdA= [($+ews esrd) *xsd A
4 . (326)

=lpeat @ ho+ 5 hpss 262l
- 26’3]¢23 —2ese3bm
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Here it should be noticed that when Eq. (25)
compares with Egs. {27) and {26) with Eqg. (29,
one can find a drawback in the previous formu-
lation {Kim et al., 2002}, namely the elastic strain
and kinetic energies from the centroid formula-
tion should retain the several sectional properties
related to the warping function which does not
become zero at the centroid.

3. Finite Element Formulation

The Hermitian curved beam element having
arbitrary thin-walled cross sections is used bas-
ed on the elastic strain and kinetic cnergy ex-
pressions derived in the previous Section. Fig. 3
shows the nodal displacement vector of thin-
walled Hermitian curved beam element including
restrained warping effect. This curved beam ele-
ment has two nodes and eight degrees of freedom
per node. As a result, the element displacement
parameters Uy, Uy, Uz @ can be interpolated
with respect to the nodal displacements, which
the detailed expression is presented in Kim et al,
{2002). By substituting the interpolating func-
tions, material and cross-sectional properties into
Egs. (20}, (23) and (10) and integrating along
the element length, equations of motion of thin-
walled curved beam element are obtained in ma-

trix form as

(Ke_ (I)‘zMe) Ue:Fe (33)
where
fut, vt wh of, of, of, 7, g5
UC:\ a P p 4 4 7 g @ > (34(1)
v vd w? ol o, wi 17, g%
F _/F‘D, FF,FE ME, ME, MY, MS, Frﬁ,“> (34b)
T\ Fp, Fo, Fg MSMSMS, M3, FS
\m} { /{I‘)
sy A,
[SL U,
owl MY L
i Ui e
T y L @y Bty
W (z)_‘,f f
;o] ! ‘l-'"'\

Fig. 3 Nodal displacement vector of Hermitian

curved beam element

In the above equation, K. ts the 1616 element
elastic stiffncss matrix in local coordinate. In
this study, stiffness matrices are evaluated using
a Gauss numerical integration schemc. For Eq.
{34a), it is convenient to transform the rotational
and axial nodal displacement components into
the nodal components including curvature effect
as following

= Ui o+ L g (s

fr==00) - nyi;w :f”+% (35h)
)

g=Uslo) + U‘}%@:g’% w9

For the evaluation of the element stiffness ma-
trix corresponding to the transformed nodal dis-
placemenis, the transformation between the mem-
ber displacement vectors of Egs. (34a} and the
member displacement considering the effect of

curvature is expressed as

U=T\U:, &= ¢ {36)

where
Ur={u® v? w” of. of. of, 7*, g%} (37a)
Ul={u” v*, w” of, @b, of. f2, 8"} (37b)
Ut={w? v° w? of, of, o, /% g7} (37c)

UL={u?, v w? of, @ of, /% &7} (37d)

and
] . _
1 . » +
1
. . . ] . . . - .
Tl: '_1,';R . . | . .. (38)
. . |
. /R |
\_ . . _[/’R .. . . _

Based on Eq. (36), equilibrium equation (33) is
transformed to

(Kef CU2Me:] ﬁezf:‘e (39)

where
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o _<u", v®, wt, of, @, of. 7*, g°
e - s ~

uw?, 0%, wi, of, &, of, 1 §°

™ _<Flps Fips F:ip: Mlps Mga M3P3 MP, F‘?:!
= - A
lqs qus 3q’ Mlqs ga M3q! ;a F%

> (40a)

> (40b)

Matrices and vectors in Eq. (39], respectively, are
evaluated as

K.=T'K.T, Mc=T"M.T

B ~ (41a-d)
Ue :TTUe, Fe :TTFe

where

T1 *
= 42
=™ | (42)
Then the global system of matrix equilibrium
equation for the free vibration and elastic analysis
of non- symmetric thin-walled curved beam may
be obtained using the direct stiffness method.

4. Numerical Examples

In this Section, the free vibration and elastic
analysis of curved beam with mono-symmetric
and non-symmetric thin-walled cross sections
are performed and compared with the solutions
obtained from a single reference line (the line
of centroid) formulation presented by Kim at
al.(2002), solutions by other researchers and
ABAQUS’s shell elements. Also in subsequent
examples, the curved beam is modeled by 20
Hermitian curved beam elements.

41 Curved beams with mono-symmetric

cross sections

First the simply supported curved beam with
mono-symmetric cross section for the x3 axis
which the beam langth [ is 200 cm and the sub-
tended angle &, is 90°, as shown in Fig. 4 is
considered. It is well known that the in-plane
and out-of-plane behavior of this curved beam
is decoupled because the section is mono-sym-
metric in the plane of beam curvature.

The lowest ten natural frequencies by this study
are presented and compared with the solutions
based on the centroid formulation which all se-
ven displacements are defined at the centroid in
Table 1. And the lateral displacement {J, and
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the twisting angle & at the shear center of mid-
span of curved beam subjected to torsional mo-
ment M;= 10000 Niem acting at mid-span by this
study are compared with the solutions by the
centroid formulation in Table 2. 1t can be found

Table 1 Natural frequency of simply supported
curved beam with xz mono-symmetric sec-
tion, {rad./sec)

Mode This study C-formulation
l 1.657% 1.6579
2 33.049 33.049
3 37.792 37.792
4 40.767 40.767
5 44.559 44.559
6 55.998 55.998
7 59.412 59.412
8 84.894 84.394
9 94.375 94.375
10 116.51 116.51

Table 2 Lateral displacement and twisting angle
of simply supported curved beam with xs
mono-symmetric section, (cm, rad.)

Mode

This study C-formulation
Us —1.8911 —1.8911
) 0.057387 0.057387
Xa
ry
Xz X2
R o 10 om
Cemrotd S xr — 0.5 cm
LN
\{9.. ]
N 5 em

{a) Geometry of a curved (b} Mono-symmetric cross

beam section for xs axis

E=2x10" Nfem®, G=T7692308. N/cm?,
0=0.077009 N/cm®, A=125em? [J=1.04167 cm®,
ex=0cm, ea=8.61538 cm, L=133.33333 cm’,
L=67.70833 cm®, Lss=—100 cm®,

Iss= —41.66667 cm®, J,=641.02564 cm®,
Tp2=0641 02564 cm®, [4pn=—486.93294 cm’

{c) Material and sectional properties
Fig. 4 Simply supported curved beam with mono-

symmetric cross section for xs axis
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from Tables | and 2 that the natural frequencies
and the displacements by this study coincide ex-
actly with the sclutions based on the centroid
formulation.

Table 3 Natural frequency of simply supported
curved beam with x2 mono-symmetric sec-
tion, {rad./sec)

Mode This study C-formulation
| 39294 3.9294
2 27.940 27.940
3 73.536 73.536
4 87.308 87.308
5 91.445 9{.445
6 £38.77 138.77
7 148.30 148.30
8 158.23 158.23
9 219.67 219.67
10 22527 | 225.27
Table 4 1.ateral, vertical displacements and twisting

angle of simply supported curved beam
with x: mono-symmetric section, (cm, rad.)

Mode l This study C-formulation
7 —1.8329 18329

U, —0.11859 —0.11859
¢ 011398 0.11398

2 om

{a) Mono-symmetric cross section for x, axis

E==2x 10" N/cm?, (=7692308. N/cm?,
0=0.077009 N/cm®, A=4.5 cm?, J=0.375 cm*
o= —1.15033 cm, ¢;=0cm, fr=17.70833 cm?,

L=1.77778 cm*, L2z =4.62963 cm?®, [ya=1.23457 em®,
[2=7.84314 cm®, fgps= —7.84314 cm®
{b) Material and section properties

Fig. 5 Simply supported curved beam with mono-
symmetric cross section for xp axis
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Next, Fig. 5 shows the mono-symmetric cross
section for x, axis and its material and secticnal
properties of simply supporied curved beam, in
which the subtended angle and the beam length
are 90° and 100 ¢m, respectively. In this case, the
vibrational and clastic behavior of curved beam is
spatially coupled because of the mono-symmetric
cross section for xz axis. In Tables 3 and 4, the
spatially coupled natural frequencies and the dis-
placements at the shear center of loading point
of beam subjected to M, =10000 Nem acting at
mid-span are given and compared. The cxcellent
agreement between results based on two formula-
tions is evident

42 Curved beams with non-symmetric cross
section

In this example, the non-symmetric curved
beams with clamped-free and clamped-clamped
boundary conditions at the bhoth ends are consi-
dered. Figure 6 shows the configuration of non-
symmetric cross section and the material and
sectional properties. First, the lowest ten spatially
coupled natural frequencies for cantilevered and
clamped curved beams for subtended angle 10°

X
j 2 cm
¥ ocm
X2
i 0.5 cm
1— L ]
f——p
4 cmn

{a) Non-symmetric ¢ross section
E=294300 N/em?, G=112813 N/em?,
2=0.077009 N/em®, A=7em’, J=0.58333 cm®,
eo=1.44846 cm, e3= —2.04461 cm, L,=67.04762 cm®,
L=8.42857 cm®. La=19.14286 cm®, Jozp = 35224490 cm®,
L= —20.02721 em®, Fops=—17.41497 cm®,
Las=—13.38776 cm®, [,=42.48664 cm®
[p2=24.48383 cm°®, [0 — 42 48004 cm®,
Joza=—10.53165 e, [ppo=117.44909 cm’, /=200 cm
(b) Material and section properties
Fig. 6 Cantilevered and clamped curved beams with

non-symmetric cross scction
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Table 5 Natural frequency of cantilevered curved beam with non-symmetric section, (rad /sec}®
Vibration mode
e I 2 3 4 5 6 7 8 9 10
This study 00290 02686 05963 15252 51373 77437 17386 20622 27159 52343
10 Kl(g’ogtz}al 00290 02686 05963 15252 S1373 77437 17386 20622 27159 52343
ABAQUS 00299 02670 05887 15265 50520 77433 16925 20575 26645 52892
This study 00062 0206f 02901 20272 52138 73645 17.473 32844 37949 47720
90 K‘(‘;ng)al 00062 02061 02901 20272 52138 73645 17473 32844 37949 47720
ABAQUS 00060 02043 02779 21714 50293 71815 17079 32233 36624 43574
Table 6 WNatural frequency of clamped curved beam with non-symmetnic section, {rad /sec)®
Vibration mode
b 1 2 3 4 5 6 7 8 9 10
This study 09488 44120 63262 17731 18778 21295 49633 59534 99774 11958
t0 Kl(’gogtz)al 09488 44120 63262 17731 §8778 21295 49633 59534 99774 11958
ABAQUS 09679 43543 64045 16946 [§565 21369 50231 58585 10044 10501
This study 07223 39916 13570 31829 35223 41852 71047 80658 13820 14888
90 Kl(’;logtz)al 07223 39916 13570 31829 35223 41852 71047 80658 13820 14888
ABAQUS 07020 39088 13388 30838 34855 37792 69831 78659 11515 14053

Table 7 Lateral, vertical displacements and twisting
angle of clamped curved beam with non
-symmetric section, {cm, rad )

Mode This study C-formulation
U, —14185 —14185
U, 012054 012054
7 016893 016893

and 90° with keeping the total length of beam
constant by this study are presented m Tables 5
and 6, respectively For comparison, the previous
solutions based on the centroid formulation {Kim
at al, 2002} and the results obtamed from 300
nine-noded shell elements (S9R5) of ABAQUS
which 1s the commercial finite element analysis
program are given From Tables 5 and 6, 1t can be
observed that the centroid-shear center formula-
tion proposed by this study for the vibration
analysis of curved beam with non— symmetric
cross section is accomplished Also results by
this study are m a good agreement with those by

ABAQUS’s shell elements Additionally the lat-
eral [, vertical U displacements and the
twisting angle & at the shear center of mid-span
for clamped curved beam subjected to a torsional
moment 1000 Nem at the mid-span are presented
together with the results based on the centroid
formulation in Table 7, where exact agreement 1is
observed for the spatially coupled elastic analysis
of curved beam with non-symmetric ¢ross section

4.3 Carved beam with L-shaped cross sec-
tion

We concern the free vibration and elastic an-
alysis of the L-shaped curved beam as shown
Fig 7 The purpose of this example 1s to show the
usefulness of the proposed curved beam theory
with non-symmetric section neglecting warping
deformation and to verify how it predicts well the
behavior of structure by comparing the present
solutions with those by ABAQUS’s shell elements
and the previous researches The curved beam 1s
the clamped at the both ends and subjected to

Copyright (C) 2005 NuriMedia Co., Ltd.
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X3
127 em (5 )
- - . "o
s 33-*'3' L27 cm
I {0.50n}
6.35 omit {]
2.5in): LR, 127w
0.5 1n)
¥

{a} Non-symmetric L-shaped cross section
E=20684.28 kN/em®, G=7955.4¢ kN/cn?,
2=0.077009 N/cm®, A=24.1935 cm?,
J=13.00723 cm®, &:=—4.23333 cm,
e;=1.05833 cm, L,=81.29520 ¢m¥, [3=433.57440 cm®,
Ls=108.39360 cm®, Foso— —229.43312 cm®,
Pes=—229.43312 cm®, R=914.4 cm, /=609.6 cm
{b} Material and section properties
Fig, 7 Clamped curved girder with non-symmelric

L-shaped section

out-of-plane lateral force 4.45 kN (1000lb) ac-
ting at the mid-span. In Table 8, the lowest
ten spatially coupled natural frequencies by this
study using Egs. (25) and (26) are reported toge-
ther with those by previous research using Egs.
{27) and (29), which several sectional proper-
ties may be needed additionally for analysis and
with those obtained from 240 shell elements of
ABAQUS. From Table 8, it can bhe found that
present solutions coincide exactly with those by
previous research based on the centroid formula-
tich and for comparing with results by ABAQUS,
excellent agreement is observed with less than
2.2% as maximum of difference. It should be
noted that the present curved beam theory with
non-symmetric ¢ross section which the warping
function is zero at the shear center eliminates the
sectional properties of structures for the dynamic
analysis of curved structures.

Next, the lateral displacement {Jy at the corner
of the L-shaped cross section along the curved
beam subjected to cut-of-plane lateral force is
evaluated and plotted in Fig. & By considering
the symmetry, 10 curved beam clements are used.
For comparison, the results using Eq. (27) and 8
HMC2 curved beam elements by Gendy and
Suleeb (1992) based on the centroid formulation
and the solutions using 24 guadrilateral shell
elements developed by Saleeb et al.{1990) are

Table 8 Natural frequency of clamped curved beam
with L-shaped section, (rad./sec)?

Mode | This study * C-formulation | ABAQUS
1 5.6246 5.6246 5.5925
2 6.0305 6.0305 6.1635
3 10.792 10.792 11.001
4 17.427 17.427 17.224
5 19.116 19.116 19.401
6 23.300 23.800 Eoo23.917
7 28.498 28.498 28.332
8 30.329 30,329 30,585
9 34.996 34.996 34712
10 36.862 36.862 36.129
1t
Prevent studs
oy 7 Cfarmblation [
o HMO D iGendy and Sutech 1992 - et
. bs A ] Shell ciements 1Sukeeh eraf. 1990 ,f//
& e
g 3 L
:_, e
. ./’
FEETE o
g 0 o d
_Z_ 04 4 }'
= P
% LR {/
- o: /';/'
0l - e
o
EE T T T T Y 1 T T T
[ Toowdowd oy IFE N R |
RRY))
Fig. 8 Lateral displacement at the shear center of

[.-shaped girder

presented. Investigation of Fig. 8§ reveais that
present soiutions using Eq. (25) are in 2 good
agreement with those obtained from HMC2 cle-
ments and shell elements.

44 Curved box girder with non-symmetric
cross section

In our final example, the non-symmetric curv-
ed box girder as shown in Fig. 9 is considered.
The girder is simply supported at the two ends
and 1s subjected to an cecentric lateral force 8¢ N
(201b) at the exterior web of mid-span. Because
the material properties of plexiglass are time
dependent, a series of preliminary tension and
bending tests were performed on specimens cut
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H = 10668 cm

{42 i)
{a) Planc view
. 45.72 e (18 1n)
h {1.6248 cm
BONROIY o 046 )
4 ? 6.35 ¢m
06071 em .l x JHXJ i :
. 2 0.6248 cm 2.5 In}
(0,239 ) 0046 m) ¥
P - RP— )
7 62 em 20.48 cm {12 m) I 0.4953 cm
. - .195 in)

| 13 ) i)
‘r““—;’r— R= 12054 em

| {51 in)

{b) Non-symmetric box section

Fig. 9 Simply supported non-symmetric curved box

girder
.30
- Present sty
0.45 o] C-formulation
- o HMC2 (Gendy and Sajeeh, 1992%
g 840 A [ Eap. (Famm and Tarkstra, 1976)
4 | Shedl clemenis (Fam and Turkseea, 1976)

ES .
;. A e |
_:)— 0 /9/,,.

. e
o e L
&
L 025
3
o -
@420 A #
- '/{
F o015
3
ot
& 00
-
0,85 -
4.0 T T 1 T T T T T T
nOg 00s 0.0 633 02 025 034 035 04D 045 G50
xil

Fig. 10 Vertical displacement along the external web
of a curved box girder

from the same sheet as the model sections. As a
result of test, the material properties are taken
as £ =275.97 kN/cm® (400 ksi) and poisson’s
ratio #=0.36. To prevent the distortion of cross
section of box girder, two end diaphragms and
four intermediate diaphragms at angles of 15°,
35°, 55°, and 75° from the lines of support are
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installed. By considering the symmetry, one half
of span is modeled by 10 elements. Out-of-plane
lateral displacement of the top flange at the loca-
tion of the exterior web of midspan is shown
in Fig. 10. For comparison, the results by the
centroid formulation, 10 HMC2 elements, ex-
perimental results and FE solutions using shell
clements by Fam and Turkstra {1976) are pres-
ented. From Fig. 0, it can be found that present
results are in a good agreement with the com-
parisons reported. Consequently the analysis neg-
lecting the warping deformation results in an
excellent fit to the behavior of curved box girders.

5. Conclusions

A centroid-shear center formulation for the
spatially coupled free vibration and elastic an-
alysis of thin-walled curved beams with non-
symmetric open and closed cross sections 1s pro-
posed. This theory overcomes the drawback of
previous curved beam theory based on the cen-
troid formulation which should account for sec-
tional properties additionally for curved beams
with L- or T-shaped sections. In numerical exam-
ples, FE solutions using Hermitian curved beam
elements by this study are compared with those
obtained from the centroid formulation and the
results by available references and ABAQUS’s
shell elements. Consequently, the following con-
clusions may be drawn.

{1} The vibration and elastic theories of the
thin-walled curved beam neglecting the restrained
warping torsion at the shear center may be easily
derived from the thin-walled curved beam theory
based on the centroid- shear center formulation
by putting the sectional properties associated with
warping to zero.

{2} For vibration and elastic analysis of curv-
ed beams with mono-symmetric and nen-sym-
metric cross sections, the solutions by this study
coincide exactly with those from the centroid
formulation.

(3} For curved beam with L-shaped cross sec-
tion, the natural frequencies and the displace-
ments obtained from this curved beam elements
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are 1n excellent agreement with those from curv-
ed beam elements including the warpimg and
ABAQUS’s shell elements Resultantly it 15 be-
lieved that this study eliminates total sectional
properiies of structures for the dynamic and elas-
tic analysis of curved structures

Acknowledgment

This wotk 15 a part of a research project sup-
ported by a grant (RO1-2002-000-00265-0) from
the Korea Science and Engineering Foundation
and Korea Miinstry of Construction & Trans-
portation through Kotea Bridge Design & Engi-
neering Research Center at Seoul National Uni-
versity The authors wish to express their grati-
tude for the financial support

References

Chucheepsakul, 8§ and Saetiew, W, 2002,
“Free Vibrations of Inclined Arches Using Finrte
Elements,” Structural Engineering and Mec-
hames, Vol 13, pp 713~730

Cortinez, V H and Piovan, M T, 1999, “Out
of Plane Vibrations of Thin-Walled Curved
Beams Considering Shear Flexibility,” Structural
Engineering and Mechames, Vol 8, pp 257272

Dabrowsky, R, 1968, Curved Thin-walled Gir-
ders {Translated from the German), Cement and
Concrete Association, London

Fam, A R M and Turkstia, C, 1976, “Model
Study of Horizontally Curved Box Girder,” Jour-
nal of the Siructural Division (ASCE), Vol 102,
pp 1097~ 1108

Gendy, A § and Saleeb, A F, 1994, “Vibra-
tion Analysis of Coupled Extensional/Flexural/
Torsional Modes of Curved Beams with Arbitra-
ry Thin-Walled Sections,” Journal of Sound and
Vibration, Vol 174, pp 261~274

Gendy, A S and Saleeb, A F, 1992, “On the
Finite Element Analysis of the Spatial Response
of Curved Beams with Arbitrary Thin-Walled
Sections,” Computers & Structures, Vol 44, pp
639~-652

Gyelsvik, A , 1981, The Theory of Thin Walled
Bars John Wiley & Sons, Inc

Copyright (C) 2005 NuriMedia Co., Ltd.

Gruttmann, F, Sauver, R and Wagner, W,
2000, “Theory and Numerics of Three-Dimen-
stonal Beams with Elastoplastic Material Behav-
wour,” International Journal for Numerical Me-
thods m Engwneering, Vol 48, pp 1675~ 1702

Gruttmann, F, Saver, R and Wagner, W,
1998, “A Geometrical Nonlinear Eccentric 3D~
Beam Element with Arbitrary Cross-Sections,”
Computer Methods in Applied Mechanics and
Engineering, Vol 160, pp 383400

Gupta, A K and Howson, W P, 1994, “Ex-
act Natural Frequencies of Plane Structures
Composed of Slender Elastic Curved Mem-
bers,” Journal of Sound and Vibration, Vol 175,
pp 145~157

Heins, C P, 1975, Bending and Torsional
Design . Structural Members D C Health and
Company

Howson, W P and Jemah, A X, 1999, “Exact
Out-of-Plane Natural Frequencies of Curved
Timoshenko Beams,” Journal of FEngineering
Mechanics, Vol 125, pp 19~235

Hu, N, Hu, B, Fukunaga, H and Sekine,
H, 1999, “Two Kinds of Co-Type Eelements
for Buckling Analysis of Thin-Walled Curved
Beams,” Computer Methods i Applied Mechanics
and Engineering, Vol 171, pp 87~ 108

Kang, K J and Han, J W, 1998, “Analysis
of a Curved Beam Using Classical and Shear
Deformable Beam Theores,” KSME Interna-
tional Journal, Vol 12, pp 244~256

Kang, Y | and Yoo, C H, 1994, “Thin-Wall-
ed Curved Beams [ Formulation of Nonlhnear
Equations,” Journal of Engineering Mechanics
(ASCE), Vol 120, pp 2072~2101

Kawakami, M , Sakiyama, T, Matsuda, H and
Monta, C, 1995, “In-Plane and Out-of-Plane
Free Vibrations of Curved Beams with Variable
Sections,” Journal of Sound and Vibration, Vol
187, pp 381401

Lee, I H, 2003, “In-Plane Free Vibration
Analysis of Cwmved Timoshenko Beams by the
Pseudospectral Method,” KSME International
Journai, Vol 17, pp 1156~1163

Km, M Y, Kim, NI and Min, B C, 2002,
“Analytical and Numerical Study on Spatial
Free Vibration of Non-Symmetric Thin-Walled



604 Kim Nam-II and Kim Moon-Young

Curved Beams,” Jowrnal of Sound and Vibration,
Vol 258, pp 595~618.

Kim, M Y, Min, B C and Suh, M W, 2000a,
“Spanal Stability of Non-Symmetric Thin-
Walled Curved Beams I. Analytical Approach,”
Journal of Engineering Mechanics (ASCE), Vol
126, pp 497~505

Km, M Y, Min, B C and Suh, M W, 20000,
“Spatial Stabiity of Non-Symmetric Thin-
Walled Curved Beams IT. Numerical Approach,”
Journal of Engineermg Mechanics (ASCE), Vol.
126, 506~514

Saleeb, A ¥, Chang, T Y, Graf, W and
Yingyeunyoung, S, 1990, “A Hybrid/mixed Mo-
del for Nonlinear shell Analysis and 1ts Appli-
cations to Large-Rotation Problems,” Fnterna-
tional Journal for Numerical Methods in Engi-
neering, Vol 29, pp 407~446

Provan, M T Cortinez, V H and Ross;, R E,
2000, “Out-of-Plane Vibrations of Shear Defor-
mable Continuous Horizeontally Curved Thin-
Walled Beams,” Journal of Sound and Vibration,
Vol 237, pp 101118

Raveendranath, P Singh, G and Pradhan, B,
2000, “Free Vibration of Arches Using a Curved
Beam Element Based on a Coupled Polynomial
Displacement Field,” Computers & Structures,
Vol 78, pp. 583~590

Copyright (C) 2005 NuriMedia Co., Ltd.

Saleeb, A F and Gendy, A S, 1991, “Shear-
Flexible Models for Spatial Bucking of Thin-
Walled Curved Beams,” [nternational Journal
Jfor Numerical Methods in Engineering, Vol 31,
pp 729757

Timoshenko, 8 P and Gere, ] M., 1961, Theo-
¥y of Elastic Stability 2nd Ed, McGraw-Hill,
NY

Tong, G and Xu, Q, 2002, “An Exact Theory
for Curved Beams with Any Thin-Walled Open
Sections,” Advances in Structural Engineering,
Vol 5, pp 195~209

Vlasov, V Z, 1961, Thin-Walled Elastic
Beams, 2nd Ed, Nattonal Science Foundation,
Washington, D C

Wilsen, J F and Lee, B K, 1995, “In-Plane
Free Vibrations of Catenary Arches with Un-
symmetric Axes,” Structural Engineering and
Mechanics, Vol 3, pp 511~525

Yang, Y B and Kuo, S R, 1987, “Effect of
Curvature on Stability of Curved Beams,” Jour-
nal of Structural Engineering (ASCE), Vol 113,
pp L1B5~1202

Yang, Y B and Kuo, § R, 1986, “Static Sta-
bility of Curved Thin-Walled Beams,” Journal
of Engineering Mechanics (ASCE), Vol 112,
pp 821841



